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Abstract 

We report the general theory to compute the force due to light upon a particle. After that we 
focus our attention to Van der Waals forces in plane parallel geometry for an one-dimensional crystal 
with an homogeneous inclusion embedded in its volume. 
 

1. Introduction 
 

The demonstration of mechanical action on small particles with radiation 
pressure was done by Ashkin [1]. In the past several theoretical works on optical 
forces used approximations by splitting the force into three parts: the gradient, 
scattering and absorbing forces [2]. However, a rigorous calculation requires the use 
of the Maxwell’s stress tensor. The relation between the Maxwell’s stress tensor and 
the force 

r
on an object illuminated by an electromagnetic (e.m.) wave with angular 

frequency  is given by the following equation 
r r r
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Here S is the surface enclosing the object,  is the local outward unit normal, 

the asterisk denotes the complex congugate, and Re represents the real part of a 
complex number. This equation is written in CGS units for an object in vacuum. If the 
object (the particle) is a sphere illuminated by a plane wave with an incident wave 

vector 
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)  the force is given by the Mie scattering result [3] 
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where Cext denotes the extinction cross section, Csca the scattering cross section 
and <cosθ> the average of the cosine of scattering angle.In this paper we 
concentrate our attention to the case of forces induced by a fluctuating e.m. field (no 
incident plane wave as in (1.2) ). These forces are due to thermal fluctuations; They 
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exist even at zero temperature (T=0) due to quantum effects and are known as Van 
der Waals (VdW) or Casimir dispersion forces [4]. In the VdW limit the retardation of 
the e.m. interactions can be neglected, and in the Casimir limit the effect of 
retardation is considerable. We will report some extensions of the rigorous continuum 
model developed in [5] by Lifshitz and others who derived an expression for the e.m. 
fluctuational interaction between two macroscopic semiinfinite bodies separeated by 
a plane-parallel slab of finite thickness. 
 

2.Formulation of the problem. The Green’s dyadic function in an one 
dimensional inhomogeneous medium 

 
Our purpose here is to derive two scalar differential equations and boundary 

conditions to them. We will show that these two scalar equations determine the 
whole spatial information for the Green’s dyadic function . According to 
general theory [6] the tensor  is needed for calculation of the pressure (the force 
per unit area) acting in a medium having z coordinate dependent dielectric 
permittivity . The starting point is the equation for  
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where  is the 3D Laplace operator, . Here ,: 3 1 2 3, ,x x x y x= = = ( ) ( ; )nz z iε ε ξ≡
 

2 , 0,1,2,...n
kTn nπξ = =
h

                                            (2.2) 

 
where, k is the Boltzmann constant, T is the temperature, j=1,2,3, l=1,2,3. Let 

'( , ; )lk nD r r ξr r  be the solution to (2.1) for a hypothetical homogeneous medium having 
for all z a scalar permittivity  Then we introduce the notations 0( , )ε ω z
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The force per unit area is given by the following formula 
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where  and the prime indicates that the n=0 term is to be multiplied by 
½. Due to homogeneity in the x-y plane we introduce the following Fourier transform 
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A further transformation is needed to replace the matrix d  with a new matrix 
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Then the Green’s dyadic problem (2.1) reduces to 
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so that g have only five non-zero elements 
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The equation for  '

22( , )g z z
 

22
2 '

222 2 ( ) ( , ) 4 ( )nd q z g z z z
dz c

ξ
ε π

 
− − = − 

  

'zδ     (2.13) 

 
corresponds to transverse electric (TE) waves (or s-polarization).At every point  
we require continuity of the function and its derivative 
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For transverse-magnetic (TM) waves we derive the following equation for 

: '
11( , )g z z

 
2

'11
11 2( ) ( ) ( , ) 4 ( )

n

dgd a z z g z z z z
dz dz

ε π δ
ξ

  − = 
 

'c
−     (2.15) 

 
where 

2
2 2

2
( )( ) , ( ) ( )
( )

nza z w z q z
w z c

ξε ε= = + 2       (2.16) 

 
and the boundary conditions to this equation are 
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For the other three functions corresponding to TM-waves we derive 
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3. Specific examples. VdW interactions between macroscopic bodies having 

inhomogeneous dielectric permittivities 
 

Let us consider a physical system having the following distribution of the 
dielectric permittivity 
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where we have denoted  with the symbol ξ.This is one-dimensional crystal in 
which an inclusion 

nξ
/ 2

(iε ε∆
z L<  with permittivity  is embedded. If the 

modulation function ∆ =  we have the standard problem of interaction of 
two identical macroscopic bodies having permittivity and separated by a 
plane parallel slab of thickness L.We will develop a perturbation theory for small 
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modulation taking into account only linear with respect to ∆ terms. Solving the 
equations (2.13) and (2.15) without the source terms we derive two 
dispersion relations q q for existence of TE, respectively TM modes in the 
following form 
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Formula (2.6) can also be written as ( ) = −F L , where 0 / 2z L< and the 
free energy of interaction per unit area is 
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The result in equation (3.7) follows from the procedure given in Section 2 and 

is in accordance with calculations for homogeneous laminated media given earlier 
[7]. By making the substitution 2qL=x and also replacing the summation on n with 
with ξ-integration which is valid at low temperatures this becomes 
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We will analyze this result only in the nonretarded VdW limit (i.e., assuming an 

infinite speed of light) thus limiting application of our results to L no more than about 
. In this limit  and the contribution from the TM mode can be written as 100A& TE∆
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The first term (negative energy) corresponds to attraction forces whereas the 
second term has an oscillatory behavior as a function of q . Recently such 
oscillations with the thickness of the film has also been predicted in cholesteric 
crystalline films [8]. Integration with respect of x and ξ in (3.8) is elementary if we use 
some empirical characterization of all permittivities entering in (3.9) like [9] (here 
a=const., the dimension of b is rad/sec) 
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